The GEM NeuroTube is an absorbable woven Polyglycolic Acid (PGA) mesh tube which is designed for single use in patients with an injury to a peripheral nerve in which the nerve gap is ≥8mm, but ≤3cm. The GEM NeuroTube creates a tensionless repair and offers return of sensation with no donor-site morbidity.

Safety and Efficacy
- NeuroTube was the first biodegradable nerve conduit cleared for use in the US and EU
- NeuroTube is backed by over 20 years of research – the most clinical data available
- NeuroTube is made from woven Polyglycolic Acid (PGA) mesh which means no concerns with animal materials or the need to remove foreign bodies in a subsequent operation

Strength and Flexibility
- NeuroTube has corrugated walls that resist kinking and occlusive forces of surrounding tissue
- NeuroTube is flexible to accommodate movement of joints and associated tendon gliding

Permeability
- NeuroTube’s woven Polyglycolic Acid (PGA) mesh allows the infiltration of oxygen to support the regeneration process

Bioabsorbability
- NeuroTube is absorbed in the body via hydrolysis, begins to break down at three months, and is resorbed within six to eight months

Convenience
- Stored at room temperature with a shelf life of up to five years
- No hydration or preparation prior to surgery
- No waste – can be used right out of the package when you know you’ll need a graft

Ordering Information
- GEM0240NT 2.3mm (inner diameter) x 40mm (length)
- GEM0420NT 4.0mm (inner diameter) x 20mm (length)
- GEM0820NT 8.0mm (inner diameter) x 20mm (length)
NeuroTube was the **FIRST** biodegradable nerve conduit on the market and has over 20 years of well documented successful clinical outcomes. NeuroTube is the **ONLY** nerve conduit to have undergone extensive clinical trials on humans in the United States.

“Technical Use of Synthetic Conduits for Nerve Repair”

“Synthetic Nerve Conduits for Digital Nerve Reconstruction”

“Nerve Grafts and Conduits”

“Motor Nerve Regeneration Across a Conduit”

“US Food and Drug Administration/Conformit Europe-Approved Absorbable Nerve Conduits for Clinical Repair of Peripheral and Cranial Nerves”

“Reconstruction of the Spinal Accessory Nerve with Autograft Or Neurotube? Two Case Reports”

“Considerations in Nerve Repair”

“A Randomized Prospective Study of Polylgycolic Acid Conduits for Digital Nerve Reconstruction in Humans”

“Tubular Versus Conventional Repair of Median and Ulnar Nerves in the Human Forearm: Early Results From a Prospective, Randomized, Clinical Study”